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Abstract-A boundary-integral equation method for bendinl of thin orthotropic linear elastic
plates with polYlonal planform under quasistatic pressure loading is presented. A change from
Huber's differential equation for the deflection to the simpler biharmonic equation of Kirchoff's
isotropic plate theory by means of a linear transformation of the plate domain renders a
non-classical boundary value problem; the transformed plate is embedded in a basic rectangular
domain; coincidence of boundaries is applied as far as possible. Using Green's matrix of the basic
isotropic plate, a vectorial boundary integral equation for a fictitious density function vector is
developed, which has to be defined on part of the actual boundary only. Solution generally is
achieved by a numerical procedure, and Green's matrix is split into a regular and a singular part.
Analytic integrals of the latter are independent of the special choice of the basic domain. Having
solved the integral equation, all interestinl state variables within the isotropic domain are evaluated
by means ofintegration and may be transformed back to the original orthotropic plate in a simple
manner. Method is tested in example problems.

1. INTRODUCTION

Following the well-known theory dating back to Huber ([1], see also [2], p. 364-369), this
paper is concerned with thin, linear elastic, orthotropic plates under quasistatic pressure
loading. Thereby, plates of convex polygonal planform and clamped, simply supported or
free boundaries are considered. It is assumed, that the properties of the given clastic
constants enable a change from Huber's differential equation for the deflection to the much
simpler biharmonic equation of Kirchhoff's isotropic plate-theory ([2], p. 82) by means of
a linear, orthogonal transformation of the given plate domain. This, e.g., works for two-way
reinforced concrete plates and was used first by Huber himself[3] in case ofsimply supported
rectangular plates.

For polygonal plates of arbitrary shape it is seen, that the character of kinematical
boundary conditions is not changed by the transformation; for dynamical boundary
conditions however, this is generally not true. Thus, a nonclassical boundary-value problem
in the isotropic plate domain results. Only for edges parallel to the principal axes of
orthotropy agreement with Kirchhoff's boundary conditions ([2], p. 84) remains.

Accordingly, the application of a boundary integral equation technique based on the
method of Green's functions, which recently was developed for classical isotropic plates[4],
seems to be a problem-oriented and convenient strategy. Thereby some ideas given by
Melnikov[S] for problems of plane elasticity are paralleled once more.

The transformed polygonal plate is embedded in a rectangular domain with edges
parallel to the principal axes of orthotropy, where coincidence of boundary conditions is
applied as far as possible. This obviously is facilitated by usual types ofplate constructions.
Furthermore, rectangular plates with classical, homogeneous boundary conditions are
treated in detail in literature ([2], p. 80-153).

Now, the unknown deflections and their derivatives in the transformed polygonal
domain are represented by superposition of solutions in the basic rectangular plate, namely
the solution due to the given loading and some homogeneous solutions. The latter corre­
spond to a fictitious density function vector with components to be interpreted as line loads
and moments distributed along the remaining, not coinciding part of the boundary. The
boundary conditions there, being not yet satisfied, lead to a pair of coupled integral
equations for the components of the density function vector, where the kernel is the
corresponding Green's matrix of the rectangular domain.
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Solution to the integral equations is achieved by a numerical procedure analogous to [4].
A system of linear equations is derived by stepwise integration over equidistant integration
intervals. For that purpose, Green's functions are split into a regular and a singular part.
The integrals over the singular part are independent ofthe choice of the special basic domain
and, according to the nonclassical character of the boundary value problem, are listed
below. Because boundary conditions partly are satisfied by means of the analytic formu­
lation, the size of the system of equation generally is much smaller than that derived by
standard numerical procedures.

Having solved the integral equations numerically, all the interesting state variables
within the isotropic polygonal domain are explicitely known to about the same numerical
accuracy and are retransformed to the actual orthotropic plate in a very simple manner.

Procedure is tested in example problems with simply supported basic domains.

2. A NONCLASSICAL BOUNDARY-VALUE PROBLEM FOR THE
BIHARMONIC DIFFERENTIAL OPERATOR

In this paper thin, linear elastic plates of convex, polygonal planform under arbitrary
pressure loading p are considered. Homogeneous orthotropic material is assumed, where
one ofthe three perpendicular planes ofelastic symmetry is the midplane of the plate. Then
Huber's differential equation for the plate deflection wis valid ([1], see also [2], pp. 364-369):

(1)

Herein (x, y) denotes a global cartesian coordinate system ofthe midplane with axes parallel
to the principal axes of orthotropy; the bar refers to functions of the given orthotropic plate
domain. Differential relations between wand moments mor shearing forces qare given in
Appendix A for convenience, where the four necessary elastic constants are denoted by
Kx,Ky,Kxy and H. Appropriate definitions of these stiffness factors may be taken from the
literature in numerous cases (e.g. [2], pp. 364-369) and are cited in Appendix 1 for two-way
reinforced concrete plates.

It is well known (and first was noted by Huber himself in [3]), that eqn (1) may linearly
be transformed to the governing biharmonic equation of Kirchhoff's isotropic plate-theory
([2], p. 82) under certain circumstances. This remarkable advantage is used for simply
supported rectangular plates only in the literature (e.g. [6], p. 313). Here, polygonal plates
with simply supported, clamped or free boundaries are treated (see Fig. l) and the influence
of the transformation upon the formulation of the boundary conditions will be studied in
detail.

For that purpose the prescribed kinematical or dynamical conditions at the boundary
C of the plate, forming a vector Z of two components and being defined in a local
(n, s)-coordinate system on C (see Fig. l), have to be represented in the global coordinate
system by means of deflection wand its derivatives. This is performed in Appendix 2,
Table 1.

Now, according to Huber's cited observation, the given orthotropic plate domain is
subjected to the following linear transformation:

w(x,y) =w(x',y'),p(x,y) =p(x',y').

(2.1)

(2.2)

Double bars denote functions of the transformed domain and the new global coordinates
are (x',y').

Using

(3)

j, k =0, ... ,4; j + k S 4,



A boundary-integral equation method

x E
x' E'

T

a

b

C'

y.y'

247

Fig. 1. Geometry of polygonal, transformed polygonal and basic domain. Definition of density
functions along r' and coordinate systems used in the general formulation. T1'TT1 clamped, ­
simply supported, -- free, _.._.- transformed simply supported, --- transformed free edge.

it is seen, that for H2 ... K"Ky , eqn (1) becomes:

(4)

This is the desired biharmonic equation for the deflection, considerably simplifying the
solution of the problem. K ... K" is the fictitious plate stiffness of the transformed, isotropic
plate domain.

Clearly, eqn (4) could have been derived by modifying both of the global coordinates
instead ofone only. In every case, however, it has to be required, that H2 ... KxK,. This, e.g.
is the case for the already mentioned two-way reinforced concrete plate (see Appendix 1),
often is used exclusively in the literature (e.g. [7]), and will be assumed here, too.

By means of the transformation (2) the state vector 2 is changed to 2. The latter is
given in Appendix 2, Table 2, in global coordinates (x',y') and is represented in Table
3 in local coordinates (n', s') of the transformed boundary C' (see Fig. 1.).

As it is seen, the kinematical boundary conditions may be represented in accordance
to Kirchhoff's theory ([2], pp. 83, 84). For dynamical boundary conditions this in general
is not true. In case of skew edges with dynamical boundary conditions, Table 3 and eqn
(4) define a nonclassical boundary value problem for the biharmonic differential operator
in w. For parts of C', which are parallel to the principal axes (x',y') accordance may be
achieved by choosing Poisson's ratio v' of the transformed, isotropic plate domain to be
v' ... (H - 2K"y)/2 in case offree edges.t (H - 2K"y ~ 0 on physical reasons, see[2], p. 365).
It should be noted, that the formulation of the transformed boundary conditions is by no
means more difficult than in the original problem (compare Tables I and 2), the new
governing differential eqn (4) being of a much more convenient form than Huber's
equation (I).

Having solved the new problem stated above, all kinematical and dynamical functions
of the original, orthotropic domain may be obtained by means of a simple re­
transformation, which is also given in Appendix 1.

tCompare, however, ([6], p. 314), where it is erroneously stated, that for orthotropic rectangular plates with
two free opposite edges, the other edges being simply supported, no use can be made of isotropic plate solutions.
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3. A BOUNDARY-INTEGRAL EQUATION METHOD FOR THE TRANSFORMED
PROBLEM USING GREEN'S FUNCTIONS OF FINITE DOMAINS

Solutions of the problem defined by eqn (4) and Table 3 generally have to be obtained
through numerical methods.

In that connection the application ofa new boundary-integral equation technique, which
is based on the method ofGreen's functions and has been developed successfully for classical
isotropic Kirchhoff-plates in [4],t seems to be a convenient strategy and will be worked out
below.

At first stage, the transformed polygonal plate (see eqn 2) is embedded in a basic
rectangular isotropic plate with classical homogeneous boundary conditions. The latter
problem is well treated in the literature with respect to arbitrary loadings and Green's
functions. The edges of the basic plate are situated parallel to the transformed axes of
orthotropy (x', y'). Coincidence of boundaries is applied as far as possible, which is realized
in such a manner, that boundary conditions become identical there (note Table 3). They will.
be satisfied exactly at those boundaries throughout the numerical solution. (Obviously in
most cases of technical importance some edges of the polygonal orthotropic plate will be
parallel to the principal axes of orthotropy for technical reasons.)

Now, the unknown deflection wwill consist oftwo parts, both corresponding to the basic
rectangular plate. The first part w is due to the given loadingl', which conveniently may be
extended to the exterior of the polygonal domain to form p. Thus,

(5)

where wF denotes the Green's function for a unit force F = I. The second part Wh consists
of homogeneous solutions in order to satisfy the boundary conditions along the line r' of
the actual boundary not already coinciding with the rectangular edges:

Herein q' is the arclength of r', and Jl F, Jl M denote unknown line load densities of external
force and moment distributions along r', respectively. For coordinate systems and
definitions see Fig. I.

The Green's function wM is the deflection of the rectangular plate due to a unit couple
M = I with moment vector oriented parallel to the boundary r' and may be evaluated from
wF according to [9]:

(7)

where e' = e'(q', x') and,,' = ,,'(q', x'), see Fig. I.
The fictitious line load density functions are to be determined from the coincidence of

the deflection w + Wh of the rectangular plate with the deflection ~ in the polygonal plate.
Thus, the boundary conditions on r', which form a vector f of two components (see
Tables 2 and 3), have to be satisfied at the inner site n' =0+ , where n' is the inner normal
coordinate of r'. This leads to a boundary vector integral equation for the line-load density
functions, which may be gathered to the vectorial form fT = (JlF, JlM)::

t(s') =Z(s') +f G(s'; q')f(q') dq'l '
r "'.0+

(8)

tReference [41 and this paper is influenced by some ideas given in Melnikov's work [S] on plane problems
of elasticity.

~fT denotes the transpose of r.
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where (s') and (0") denote arclength along r', and the 2 x2 matrix G is Green's matrix
corresponding to the boundary conditions 2. The vector Z denotes the corresponding state
along r' in the rectangular plate due to the loading p.

The numerical solution of eqn (8), which may contain singular and non-symmetric
kernels, analogously follows the method given in [4] for classical isotropic plates. Hence,
the boundary r' is divided into / equidistant intervals of length A. and the unknown line
load density vector becomes stepwise constant in the intervals. By collocation the
boundary conditions are fulfilled pointwise in the midth of the intervals, s; (i = 1, ... , l).
Hence, a set of 2/ linear equations for the 2/ components of the density vectors
fJj = I, ... ,l) is obtained:

1 j-i+. i";+(A/2) I
2(s;) =Z(s;) + A. L G(s;; s;)~ + L G(s;, n'; 0") dO" ~,

J-I J-I-. 1;-(A/2) '''-0+
J,*,i-'

-ex S PSex,

(9)

where in most of the nonsingular intervals U¢ i - P) the integrals of eqn (8) are replaced
by finite sums using the rectangular formula and G is evaluated by means of the
well-known single series representations of Green's functions for rectangular plates (see
e.g. [2, 6 or 10]; for a proper formulation of a fast convergence of the series see [4]). In
the (possibly) singular intervals and in close neighborhoodj = i - p, -ex S p S ex, Green's
matrix G is split into a regular part GR and a singular part Gs. The latter is derived by
proper order differentiation from the fundamental solutions of the infinite plate domain
(see e.g. [2], p. 325):

and (see eqn 7):

(10)

M r 1 r
Woo = 47tK n bcos qJ,

0" - s'
qJ =arctg -,--,'

x -n
(11)

Gs is listed in Appendix 3, Table 4. In the intervalsj = i - p, -ex S pS ex,j ¢ i, the regular
part GR is computed from Gs and the single series solutions of G: GR=G - Gs. In the
singular intervals i = j GR then is evaluated by numerical interpolation.

Now the integrals of eqn (9) may be worked out:

is; + (A/2) I i';+ (A/2) I
G(s;, n'; 0") dO" = G,s(s;, n'; 0") dO" + A.GR(s;; s;).

s; - (./2) ,,- 0+ I; - (A/2) ''-0+
(12)

Results of analytical integration of Gs are listed in Appendix 3, Table 5. Being independent
from the special choice of the basic domain, Table 5 ensures the generality of the
problem-oriented method.

The linear system of equations, (9) is generally well behaved and may be solved by
standard procedures. For further numerical treatments, e.g. choice of / and ex or
establishment of fast convergence of the series solutions, see [4]. From there, results may
be transferred directly with respect to the equal order of derivatives of wF and wM of
Green's matrix G.

iii and its derivatives in the interior of the transformed polygonal plate are calculated
by numerical integration:

/iii + (A/2)
W....Jy.A(X', y') =W.....'yA(X',y') + L eT(x', y'; 0") dO"f/

I-I si-(.l/2)
(13)
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In eqn (13), numerical integration by rectangular-formula is appropriate. Only for points
(x', y') in close distance to the boundary line r', especially for higher-order singularities
in e, integration has to be performed analogously to eqns (9) and (12).

In connection with the re-transformation given in Appendix 1, eqn (13) then determines
all kinematical and dynamical components of the state vector in the original orthotropic
plate.

4. EXAMPLE PROBLEMS

To test the method, a FORTRAN program was set up and implemented at the CYBER
74 computer of the Technical University of Vienna. Various calculations were carried out,
showing both the low numerical effort and the high accuracy of the numerical procedure.
As an example, dimensionless results for rectangular plates with two edges simply supported
(y = 0, b) and two edges free (x = 0, a) under constant pressure loading are presented in
Table 6 and compared with solutions for isotropic plates published in ([2], p. 219). At first,
a square plate with Kx/Ky = 16 and Kx/Ky = 1/16 is studied; according to the remarks given
above, the results must correspond to those ofan isotropic plate with 6/a = 2 or 6/a = 1/2,
respectivelr Secondly, results for orthotropic plates with 6/a =../2, Kx/Ky = 1/4 and
6/a = 1/../2, Kx/Ky = 4 are given, both corresponding to a square isotropic plate. Boundary
conditions are exactly satisfied at simply supported edges and collocatively at the free edges.
The free-edge boundary condition has been chosen to show the functioning of the method
in case of highest possible order singularities of Green's matrix. A simply supported
rectangular plate is used as basic domain and each free edge is divided into I =20 intervals
in Table 6. Test calculations show, however, that the method renders satisfactory numerical
results for a much more larger length A. of the intervals, too.

Furthermore, dimensionless results for a (y ='Tt/3) skew orthotropic plate of rhombic
planform with two edges simply supported and two edges free under constant pressure
loading are given in Fig. 2. Having in mind reinforced concrete plates, Poisson's ratio of
the transformed plate is chosen to be v =0.2: thus Kx)' =0.4 H. In a range of technical
importance Kx/Ky is considered to vary between 1/4 and 4/1. The simply supported edges
parallel a principle axis of orthotropy,t and the boundary conditions there are satisfied
exactly again.

100w
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Fig. 2. Dimensionless deflections w=KywlPoo4 and dimensionless bending moments my =my/Poo2,

m., =m.,lp;? for rhombic plates with two edges simply supported, two edges free and l' =7[/3,
H =,JK;K;, X,), =0.4H under constant pressure loading Po for various values of XiK,.

tThis is a supplementary case to literature, see e.g. [Ill, where a principal axis parallels the free edges.
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Results were compared to those derived by means of a standard Finite-Element
program (SAPIV), computational costs of the boundary integral equation technique
generally being substantial lower. That is especially the case for regions not neighbouring
the center of the plate.

S. CONCLUDING REMARKS

Dealing with special orthotropy, Huber's differential equation of deflection is trans­
formed to the biharmonic equation of Kirchhoff's isotropic theory by means of eqn (2).
Transformed boundary conditions on straight lines are studied in Appendix C, and it is
seen, that their formulation for dynamical conditions is equal to Kirchhofrs in case of
edges parallel to the principal axes of orthotropy, and for kinematical conditions is equal
in any case. This is used in the numerical solution of the new boundary value problem:
extending a method for isotropic plates[4], a boundary integral equation technique using
Green's matrices of basic finite isotropic domains is applied.t Now, boundary conditions
may be satisfied exactly on parts of the boundary and the vectorial boundary integral
equation (9) has to be established on the remaining parts only, thus decreasing further the
number of unknowns and increasing hccuracy. Integrals over singular parts of Green's
matrix, being independent of the basic domain, are listed in Appendix 3. A simple
computer program may then be designed, where the well-behaved system of eqns (9) is
solved by standard procedures.

Deflections, moments and shearing forces of the original orthotropic plate are
evaluated pointwise by means of numerical integration corresponding to eqn (13) and the
simple re-transformation of Appendix 1. Computing costs are comparatively low. As
usually observed in numerical methods, however, moments and shearing forces can not
be evaluated accurately in the close vicinity of the not coinciding boundary r.

This work is part of the authors doctoral thesis[14], where computer realisations for
the solution of the integral equations may be found also.

Acknowledgement-The author wishes to thank Prof. Dr. Franz Ziegler of the Technical University, Vienna, for
many valuable discussions and comments with regard to the contents of this paper.
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APPENDIX
Basic relations of Huber's theory

In Huber's theory of orthotropic plates (eqn I and Table I of Appendix 2) the following differential relations
between deflection wand moments mor shearing forces qare valid (see [2J, p. 365):

m. - -(K.w... + (H - 2K.,)w",,),

m, = -(K).w"" +(H - 2K.)w...),

m.,= -2Kxi~..,;
q.- -(K;w... +Hw,p,)..,

q,= -(K,w,yy+Hw...),p'

(x, y) is a cartesian coordinate system of the midplan with axes parallel to the principal axes of orthotropy; the
corresponding stiffness factors Kx' Kp Kx, and H are given exemplarily for concrete plates with reinforcement
in (x, y) directions <I2], p. 366);

K,,=Ee(l,,+(n -1)[...)/(I-v/),

K, =EcClyc + (n - 1)1,,)/(1 - v/),
H = (KxK,)1I2,

K., = (I - ve)H/2,

where a linear law of material for steel as well as for concrete is assumed to be justified. c stands for concrete
and s for steel; E denotes Young's modulus and v Poisson's ratio; [is a moment of inertia with respect to the
neutral plane; n = EJEr t

By means of the transformation (2) a new problem (eqn 4 and Table 2 or Table 3.ofAppendix 2) is obtained.
The corresponding relations between m-(x,y) or q(x,y) and the derivatives of ~(x',y') are:

mx = -K(~...".+vw,p"')'

Iii,- -H(~.rY+v~..·x·),

liix,= _(KH)I"'<I-v)~ ...,.;

qx= -K.::l'w....

q,= -(KH)I{2.::l'~,y';

K =Kx and v = (H - 2Kx,)/H denote effective stiffness and Poisson's ratio of the transformed isotropic domain,
respectively.

APPENDIX 2
Boundary conditions

Table I. Table of homogeneous boundary conditions on (some part of) r, represented in the global
(x. y)-coordinate system·

Boundary conditions on (some part of) C: ! - 0

clamped:

simply
supported:

free:

where:
A - -(Kx cos" y + (H - 2Kx,) sin" 't),
B = -(K,sin2 y + (H - 2K",} cos2 y),
C = 2K", sin y;

Kx K"2 H" 2D =2'(3 -cos 2y}cos y + x,Sln')' SID ')' -2 $In')' SIn y

E = iCOSi' sin2y + Kx,(l +3cos 2y) sin i' -~(3 + cos 2y) sin y,

F = - iSin y sin 2y - Kx,(l- 3cos 2y)cos y +~(3 - cos 2y)cosy,

G = - i (3 +cos 2y) sin 1 -Kx,cosy sin 21 +~COS1 sin 2y.

•Calculated by means of geometrical transformations according to Fig. I, formulas of Appendix I and the
following relations: liia = Iii. cos" Y+m, sin" y - m., sin 2y; liiftl - (t/2) (Iii, - Iii,) sin 21 - liix, cos2y; qft = -q,
cos "I + q, sin i'; compare ({2], pp. 86, 87).

tOften the results of Kirchhoff's isotropic plate theory are used for the design of two-way reinforced concrete
plates according to nonlinear laws of material, see e.g. <I8], p. 82); consideration of orthotropic behaviour may
improve this strategy.
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Table 2. Table of transfonned boundary conditions (on some part of) f',
represented in the global (x', y')-systemt

253

Boundary conditions
on (some part of) C:

clamped:

simply

supported:

free:

2=0 on C':

tDerived from eqn (3) and Table I; for coordinate systems and definitions see
Fig. I.

Table 3. Table oftransfonned boundary conditions (on some part 01) r', represented in the local (n', s')-systemt

boundary conditions
on (some part of) C:

clamped:

simply
supported:

free:

where:

!==o on C':

[:J=ow...

[ w ]=0
A'w..... +C'w..."

[
,. B'· C'.]A w + w.,.,,+ w...,.
D'w +E'w ,.+ =0

F'w",.,.,.+G'w~.,.,.

B' =A sin2 )" +Bc -2COS2)" +1C -I sin 2)",

C' == -A sin 2)" +Bc -2 sin 2)" - CC -I cos 2)",

D' == -D cos3 )" + ~c -I cos)" sin 2)" - ~c -2 sin)" sin 2)" + Gc -3 sin3y',

E' == ~ D cos)" sin 2)" + Ec. -I (cos)" cos 2)" - ~ sin)" sin 2)")-
2 2

- Fe -2 (sin)" cos 2)" + ~ cos)" sin 2)") + ~ GC -3 sin)" sin 2)",

F' == -~ D sin)" sin 2)" - Ec -I (sin)" cos 2)" +~ cos)" sin 2)")-
2 2

- Fc -2 (cos)" cos 2)" - ~sin)" sin 2)") +~ G C -3 cos)" sin 2)",

and c == (K,IK,JI/4.

tDerived from equation (3) and Jacobian matrix with respect to Fig. I:

G~::]=[si::')', -s~:~:lG ~:J
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APPENDIX 3
Singular parts of Green's matrices and their integrals

Table 4, Table of singular components of Gt

Boundary conditions
on (some part of) r

8ltKG,

simply
supported:

free:

A' (2 In ~ + cos 2rp + 2) + C' sin 2rp

+ B' ( 2 In ~ + 2 - cos 2rp )

cos rp sin rp
-D'-- (2 -cos2rp)+E'- cos2rp

r r

cos rp .
-F'-- cos 2rp - G' SID rp (2 + cos 2rp)

r

o ]cos rp sin rp
2A'-- (2 -cos2rp) - 2C'- cos2rp

r r

2A ' cos rp (2 _ cos 2rp) _ 2C' sin rp cos 2rp
r r

cos rp+ 2S'-- cos 2rp
r

I , sin 2rp
-D';:2(cos4ql-2cos2ql)+E -2-

x (I -2 cos 2rp) + F' ~cos4ql

sin 2rp ( )+G'-;r- I +2cos2rp

tCalculated from Table 3 and eqns (10) and (II).
(I' - s'

r = [(u' - S')2 +(x' - n')2j112, rp = artg--,
x' -n'

Table 5. Integrals over singular components of G in the interval j = i - Pt

Boundary conditions
on (some part of) r f,j+(A/2l I

4ltA. G,(s;,n';u')du'
'j-IJ.i2) 0'.0+

simply
supported:

free:

where:

[.'"[In(~,~H +IPIIn .d.,]

A'A.2[ln(~,~) -~+ 1P1lnqa/q2]

+S'A.{In(~,~)+~+IPllnqllq2]

D'ltA.q3 - E'4q,ln q./q2 - G'4q,ln qa/q2

q.= I +2IPI, q2=11- 2IPII,

{
o..... P¢ 0 {-I ..... P¢ 0

q3= , q.= ,
1. .... P=O 1. .... P=O {

-I ..... P<O
q, = I P 0' 0 ... P= 0,+ ..... >

tCalculated from Table 4, where the limit n = 0 + was applied after integration.
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Table 6. Dimensionless deftections KzW/P064 and moments m,JKz/KylPl? of rectangular plates
under constant pressure loading Po for various values of KzfK" and a/6. H = JK~,.

K." = 0.35 H

x =a/2 y =6/2 x=a y=6/2

K.w
:P~

Kzw
p":b~p064 Po 64

6/ii = I. 1=20: 0.01296 0.1244 0.01533 0.1311
[2]: 0.01289 0.1235 0.01521 0.1329

K./K" =16 15%: 0.54 0.72 0.81 -U5

6/a= I., 1=20: 0.01385 0.1243 0.01455 0.1243
[2J: 0.01377 0.1235 0.01443 0.1259

Kz/K,= 1/16 15%: 0.58 0.65 0.83 -1.27

6/0 =../2.
Kz/K,= 1/4 1=20: 0.01313 0.1231 0.01498 0.1335

and [2J: 0.01309 0.1225 0.01509 0.1318
6/i = 1/../2. 5%: 0.31 0.49 -0.79 1.29
Kz/Ky=4
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